
Formulation of a Well-Posed Stokes-Brinkman 

Problem with a Permeability Tensor  
 

Kannanut Chamsri 

Department of Mathematics 
King Mongkut’s Institute of Technology Ladkrabang 

Bangkok 10520, Thailand 

E-mail address: kckannan@kmitl.ac.th 

 

 
Abstract—We consider a slow flow with incompressible 

viscous fluid flowing through two different domains: a porous 

medium and adjacent free-fluid region. With the slow flow 

problem the Stokes equation is employed in this study. To match 

the shear stress at free-fluid/porous-medium interface and to 

have a flexibility to make choice of boundary conditions at the 

interface, we apply Brinkman equations in the porous medium 

domain. A mixed finite element method is used to discretize the 

model to obtain a weak Stokes-Brinkman formulation. We 

establish the continuity of the bilinear form and then provide the 
well-posedness of the discrete problem of the Stokes-Brinkman 

equation when permeability coefficient is considered to be an n-

dimensional tensor. This result can also be applied to a free 

boundary problem as long as the boundary conditions at the 

interface is in the Sobolev space  1/2 .H   

Keywords— Well-posedness; Stokes-Brinkman; Permeability 

tensor; Moving solid phases; Finite element; Porous media 

I. INTRODUCTION 

The approximation of velocity of fluid flow through a 

porous medium and adjacent free fluid region is important in 

several applications such as fluid flow through natural rice 

field [1] which is one of classical examples that fluid is moved 

by a pressure gradient. In this research we consider a model 

that fluid is moved by self-propelled solid phases such as 

animal hair. The configuration showing the geometry of our 

model is illustrated in Figure 1. It displays an ideal cell of 

moving solid phases in domain 
1  and free-fluid region 

2  

resides above 
1.  

 

 

 

Fig. 1. A snapshot of a cell of a free-fluid region resides above                       
the porous medium. 

A model using an upscaling technique is employed so that we 

do not have to consider the motion of each individual moving 

solid phases but rather what all solid phases do collectively 

and can be viewed as a porous medium with the self-propelled 

solid phase. We employ the coupled Stokes-Brinkman system 

[2, 3]: 

   l l

l
p


  


   -1 l l

k v v
l

l
f


  


    -1 s

g k v , (1)    

             l l
v ,f             (2) 

where  / 1 ;l l lf       s
v   is a dynamic viscosity; 

-1
k  is the inverse of the permeability tensor; l  is the 

porosity; l
v  and s

v  are the velocities of the liquid and solid 

phases, respectively; p  is the pressure;   0.5
T

   l l l
d v v  

is the rate of deformation tensor;   is the fluid density; g  is 

the gravity; l  is the material time derivative of the porosity 

with respect to the solid phase, / .l l lt      s
v  The 

introduction of an effective viscosity parameter, / ,l   in the 

additional term of Darcy’s law within the Brinkman equation 

allows the matching of the stress between the two domains.  

Without the inverse of the permeability term, 

 l l   -1 l s
k v v  and the source term ,f  the Brinkman 

equation becomes the Stokes equation. With divergence-free 

condition, this is the case in 2  while the Brinkman equation 

with the nondivergence form (2) is used in 1.  The system of 

equations is derived from Hybrid Mixture Theory (HMT) [4, 

5], which is an upscaling method. The derivation of the 

momentum equation can be found in [2] while the derivation 

of the conservation of mass, equation (2), used in this problem 

is in [3, 5]. In this work, we present the existence and 

uniqueness of the Stokes-Brinkman equations for the 

numerical problem when the permeability coefficient is an    

n-dimensional tensor.       
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 Typically, Darcy’s law is used with the Beavers-Joseph 

condition in the porous medium and the Stokes equation is 

used in free-fluid region for slow flow problem [6, 7, 8]. To 

match the shear stress at the free-fluid/porous-medium 

interface, in this study, we use the Stokes-Brinkman equation, 

cf. e.g., [9, 10]. The Stokes-Brinkman equation have been 

studied by several authors in many aspects such as calculating 

the numerical solutions [11, 12, 13] or analytically finding 

drag force from the equations [14], comparing with Stokes-

Darcy in both theoretical and numerical aspects [15, 16, 17, 

18] and proving the well-posedness of the equations with 

different boundary condition [19, 20]. For example, Chen et 

al. [15] analytically compared results of Stokes-Brinkman and 

Stokes-Darcy’s equations with Beavers-Joseph interface 

condition in 1-dimensional and quasi-2-dimensional cases and 

also considered the coupling of the Stokes and Darcy systems 

with different choices for the interface conditions.  Angot [19] 

studied the Stokes-Brinkman equation with jump embedded 

boundary conditions on an immersed interface. He showed the 

well-posedness of the system of equations with Ochoa-Tapia 

& Whitaker (1995) interface conditions and Stokes-Darcy 

with Beavers & Joseph (1967) conditions. Ingram [20] 

analyzed a finite element discretization of the Brinkman 

equation for modeling non-Darcian fluid flow with different 

boundary conditions. He proved the well-posedness of the 

problem. He also established the existence and uniqueness of 

the solutions for steady Navier-Stokes equation. However, all 

of the previous works had been studied for static solid phases 

of the Stokes-Brinkman equations with a constant 

permeability.  In this study, we provide the well-posedness of 

the discrete problem of the Stokes-Brinkman equations when 

fluid flows through the domain 
1 2   by the movement of 

the solid phases and the permeability coefficient is an n-

dimensional tensor. This model can be applied to more 

realistic problems, which previously this had been shown only 

for the scalar coefficient in [20] and second-order tensor in 

[21]. 

 In Section 2, we derive the weak form of the Stokes-

Brinkman equations using a mixed finite element method.  

Theorems and the definition of a dual operator are provided in 

Section 3. The well-posedness of the weak form of the Stokes-

Brinkman system of equations is shown in Section 4 for a 

general n-dimensional permeability tensor. The conclusion is 

drawn in Section 5.   

 

II. WEAK STOKES-BRINKMAN EQUATIONS 

To prove the continuity and coercivity of the bilinear form 

 ,a    and then the existence and uniqueness of the discrete 

form of the Stokes-Brinkman equations, we first find a weak 

form of the equations and begin with introducing some 

notations and spaces which are employed from [21] defined as 

follows.  

                     2

0L   2 : 0 ,q L qd


  
     
  

           (3) 

               1

0H    1 : ,H    w w 0                         (4) 

               1

sH    1 : ,H    w w s            (5) 

             1H       1 1

0 0, the dual of ,H H


             (6) 

           V   1 : 0 and 0 ,H      w w w           (7) 

        V   1

0 : 0 ,H V 



  
       
  

w w w w  (8) 

          0V  
    1 1

0

1 : 0 ,
H H

H V



  
      w w ,w w  (9) 

where V   denotes the orthogonal of V  in  1

0H   associated 

with the  1H   seminorm 
 1

0;
H

V


  is the polar set of 

   1 1
0

; ,
H H

V    
   represents the duality pairing, in particular, 

between  1H    and  1

0 ,H   and the existence of the 

function  1/2H s  used in the definition of seminorm is 

ensured by Trace Theorem 2, below. Note that for a n-

dimensional domain,  1 n
H w  and  1 .

n n
H


  w  

However, for simplicity, we write  1H w  in either case 

and the meaning follows from the context. Recall the 

Brinkman and continuity equations,          

   l l

l
p


  


   -1 l l

k v v ,l

l
f


  


    -1 s

g k v (10)              

                                  l l
v ,f             (11) 

where the velocity of the liquid l
v  and the pressure p  are 

unknown.  Let the vector 
1

l    -1 s
f g k v   1H    with 

the following norm:  

 
 

   

 

1 1
0

1

1
0

1

1
, 0

sup ,

H

H H

H
H







  


  


1

w w

f ,w
f

w
        (12) 

where s
v  is a bounded continuous function and 

 1H 
  

represents the standard norm for  1 .H    Assume l  is fixed 

in space and define 
l l

v v  and  / .l f   
1

f f          (13) 

We obtain the Stokes-Brinkman equations in the following 

form 

      
l

p





   -1
k v v , f          (14) 

                           v .f          (15) 
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Define the linear and bilinear functionals 

               ,a v w   : ,
l





 

      
-1

v w k v w           (16) 

 ,b qv  ,q


   v             (17) 

                   1c w   
   1 1

0
1, ,

lH H
f




   



  f w w           (18) 

 2c q  .fq


               (19) 

Then, the weak formulation of (14) and (15) can be expressed 

as follows. 

 

Problem 1. (Weak Stokes-Brinkman) Find  1

sH v  and 

 2

0p L   such that 

 1

0 ,H  w        , ,pa bv w w  1 ,c w         (20) 

 2

0 ,q L                       ,b pv  2 .c q         (21) 

 

III. Preliminary definition and theorems 

In this section, we present selected definitions, lemmas and 

theorems required to use in the proof of the well-posedness of 

the weak form of our model to make this paper self-contained 

though they are provided in several places such as [20] and 

[21] while the definitions of Sobolev norm, seminorm and 

weak derivative are based on [22]. We first introduce the 

direct and inverse trace theorem for  1H   as follows [23]. 

Theorem 2.  (Direct and Inverse Trace Theorem for  1H  ) 

There exist positive constants K  and K   such that, for each 

 1 ,H w  its trace on   belongs to  1/2H   and 

   1/2 1 .
H H

K
 

w w  Conversely, for each given function 

 1/2 ,H s  there exists a function  1H 
s

v  such that 

its trace on   coincides with s  and        

   1 1/2 .
H H

K
 


s

v s          (22) 

 This theorem ensures that if  1/2 ,H s  then there 

exists  1H 
s

v  such that the trace of 
s

v  on   is .s  The 

following formulation will be used in the proof of the 

Theorem 8. 

Theorem 3.  1

0 0! V H   v  such that 
0 .f  

s
v v  

Proof.  The proof of this theorem is provided in [21]. 

 Next theorem states that the divergence operator is an 

isomorphism between  2

0L   and ,V 
 and the  

Ladyzhenskaya-Babuška-Brezzi (LBB) condition, which is 

required for the stability of a mixed finite element method, is 

mentioned [24, 25]. 

 

Theorem 4.  Let   be connected.  Then 

1)  the operator grad is an isomorphism of  2

0L   onto 0 ,V      

2)  the operator div is an isomorphism of  V  onto  2

0 .L       

Moreover, there exists 0   such that 

  
   

 

   
2

1
0 1 20

,
inf sup 0

q L H
H L

b q

q


   
 

 
w

w

w
        (23) 

and for any  2

0 ,q L   there exists a unique  

 1

0V H  v  satisfying 
                           

   1 2

1 .
H L

q 

 
v                        (24) 

Note that the equation (23) is known as the LBB condition 

[25]. We next state the definition of linear operators and their 

dual operator and then rewrite the Problem 1 in the form of the 

linear operator. This simple change allows us to prove the 

existence and uniqueness of the pressure term. Recall that the 

dual spaces of  2

0L   and  1H    are   2

0L


 and   1

0 ,H


  

respectively, i.e.,     2 2

0 0L L


    and     1 1

0 .H H 
    

Definition 5.  Let  1, H v w  and  2

0 .q L   Define 

linear operators    1 1

0:A H H     and    1 2

0 0:B H L    

by 

   1 1
0

, :
H H

A   
v w  ,a v w ,  1

0, H  v w         (25)                                

   1 2
0 0

, :
H L

B q
  

v  ,b q v ,    1 2

0 0, .H q L     v    (26) 

Let     2 1

0 ;B L H   L  be the dual operator of ,B  i.e. 

, , :B q q B v v  , ,b q v    1 2

0 0, .H q L     v  (27) 

With these operators, Problem 1 is equivalently written in the 

form:  

Problem 6.  Find    1 2

0,sH p L   v  such that 

               A B p v f  in  1H            (28)            

                         B fv  in  2

0 .L            (29) 
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IV. WELL-POSEDNESS OF THE STOKES-BRINKMAN 

PROBLEM 

Even though Ingram [20] and [21] proved the well-

posedness of the Stokes-Brinkman problem, it was for only 

with a constant and second-tensor permeability, respectively.  

Here we generalize the result of the discrete equations when 

k  is an n-dimensional tensor. To present the well-posedness 

of the Stokes-Brinkman equations, we first show that the 

linear and bilinear functionals (16)-(19) are continuous and 

 ,a    is coercive. Then we use these properties to show the 

existence and uniqueness of the equations in Theorem 8 

below. 

Theorem 7.  The linear functionals    1 2, c c qw  and 

bilinear functionals    , , ,a b     are continuous and  ,a    

is coercive, i.e., 

 
 1

2
, c H

a C


w w w          (30) 

where  min / , ;c k kC C C    is a positive number. In 

particular, 

 
     1 2 11 ,

H L H
c n f




   

 
  
 

1
w f w  

  1 ,H  w      (31)                          

 
   2 22 ,

L L
c q f q

 
    2 ,q L          (32)         

 
   1 2, ,

H L
b q n q

 
v v    1 ,H  v              

   2 ,q L          (33)        

 
   1 1, ,a H H

a C
 

v w v w   1 ,H  v     

                1 ,H  w      (34)   

    

where n  is the dimensional number and 

 1

1 ,max / , max .l

a i j n ijC n k   

   

Proof. Since the linearity of  1c w  and  2c q  and bilinearity 

of  ,a v w  and  ,b qv  are obvious and the continuities of 

   1 2,c c qw  and  ,b qv  have been shown in [21], we next 

show  ,a v w  is continuous. To prove the continuity of 

 ,a v w  for an n-dimensional domain, we first introduce 

Young’s inequality: / /p qab a p b q   where , 0,a b   

, 0p q   and    1/ 1/ 1p q   which is often used         

below, write vectors v  and w  in component forms: 

 1 2, ,..., nv v vv  and  1 2, ,..., nw w ww  and consider   

 

 
 2

2

L 
-1

k v

2

1

1 1

n n

ij j

i j

k v

 

 
  

 
    

    

 
1

2
1 1 1

1 1 1

2
n n n n

ij j ij ik j k

i j j k j

k v k k v v d


  

   

  
     

  
    

  

  
1

2
1 2

1 ,
1 1

max 2
n n n

ij k j k
i j n

k j k j

n k v v v d




 
  

 
   

 
   

                   

 

 

2
1

1 ,

1
2 22

1 1

max ij
i j n

n n n

k j k

k j k j

n k

v v v d



 



  



 
   

 
 

 

  2
2 1 2

1 ,
1

max
n

ij k
i j n

k

n k v d

 


   

    2

2 22 1

1 ,
max ,ij Li j n

n k 

 
 v          (35) 

where Young’s inequality is applied to the third inequality.  

We then employ the inequality (35) to complete the proof of 

the continuity of  ,a v w  as follows.  

      ,a v w    :
l





 

      
-1

v w k v w  

  :
l





 

      
-1

v w k v w  

       2 2 22l L L LL




   
    -1

v w k v w    

   

   

2 2

2 2

1

1 ,
max

l L L

ij L Li j n
n k







 



  

  



v w

v w

 

   1 1 ,a H H
C

 
 v w  

where  1

1 ,
max / , maxl

a ij
i j n

C n k   

 
  and (35) is employed to 

the third inequality. 

Before proving the coercivity of the bilinear form  , ,a w w  

we first consider, for n-dimensions, 

   -1
k w w

1
1 2 1

1 1

2 .
n n n

ii i ij i j

i i j i

k w k w w


 

  

           (36) 

Since in our problem -1
k  is positive definite, the diagonal 

entries of -1
k  are positive numbers, which imply that the first 

term of the right-hand side of (36) is a positive number. We 

now focus on the second term 
1

1

1

2 .
n n

ij i j

i j i

k w w




 

  Note that if 

1 0ij i jk w w   for all i  and ,j  it’s easy to see that 

   -1
k w w   1 2 1 2 2

1
1 1 1

min
n n n

ii i ii i k i
i n

i i i

k w k w C w 

 
  

     where 
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1

1
min .k ii

i n
C k

 
  If there exist r  and s  such that  1 0,rs r sk w w   

we have two possible cases. 

Case 1.  1 0rsk   and 0.r sw w   

Thus,  1 1 1 2 22 2 ,rs r s rs r s rs r sk w w k w w k w w        

where Young’s inequality is applied at the inequality.  

Without lose of generality, let .r s  Thus, 

            -1
k w w

1
1 2 1

1 1

2
n n n

ii i ij i j

i i j i

k w k w w


 

  

    

  

1
1 2 1

1 1

1 2 1

1

2

2

n n n

ii i ij i j

i i j i
i r i r

n

rr r ri r i

i r

k w k w w

k w k w w


 

  
 

 

 

 

 

 



 

  
 

 

1
1 2 1

1 1

1 2 1

11

1 2 2 1

2

2 ...

... 2

n n n

ii i ij i j

i i j i
i r i r

rr r r rr r

rs r s rn r n

k w k w w

k w k w w

k w w k w w


 

  
 

 



 

 

  

   

 

 

   

   

 

1
1 2 1

1 1
,

1 1 2 1 1 2

1 1

1 11 1

1 1

11

2

2 ... 2

2 ... 2

n n n

ii i ij i j

i i j i
i r s i r

rr rs r ss rs s

r r r sr r r s

r s rn r nr s

k w k w w

k k w k k w

k w w k w w

k w w k w w


 

  
 

   

 

  

 



 

   

  

  

 

 2

1

,
n

k i

i

C w


   

where 

      1 1 1 1min , , min ,k k k k rr rs ss rsC d b b k k k k        

and 1

1
,

min .k ii
i n

i r s

d k 

 


  Note that 0kb   because -1
k  is a 

diagonally dominant matrix. Therefore, 

  2

1

.
n

k i

i

C w


   -1
k w w      

Case2.  1 0rsk    and 0.r sw w   

 Since -1
k  is bounded, 0bC   such that 1 .rs bk C     

Thus,   1 2 22 2 .rs r s b r s b r sk w w C w w C w w        

Thus,       -1
k w w

1
1 2 1

1 1

2
n n n

ii i ij i j

i i j i

k w k w w


 

  

    

       

1
1 2 1

1 1

1 2 1

1

2

2

n n n

ii i ij i j

i i j i
i r i r

n

rr r ri r i

i r

k w k w w

k w k w w


 

  
 

 

 

 

 

 


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1 2 2 1
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n n n
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i i j i
i r i r

r r b r s rn r nr r

k w k w w k w

k w w C w w k w w


  

  
 

 



  

     

 
  

 

     

 

1
1 2 1 1 2

1 1
,

1 2 1 1

1 11 1

1 1

11

2

2 ... 2

2 ... 2

n n n

ii i ij i j rr b r

i i j i
i r s i r

ss b s r r r sr r r s

r s rn r nr s

k w k w w k C w

k C w k w w k w w

k w w k w w


  

  
 

  

  

 



   

    

  

 

 

2

1

,
n

k i

i

C w


   

 

where 

      1 1min , , min , 0k r r r rr b ss bC d b b k C k C     

 and 1

1
,

min .k ii
i n

i r s

d k 

 


  Therefore,   2

1

.
n

k i

i

C w


   -1
k w w    

From all of the cases above, we have  

   2

1

0, .
n

k k i

i

C C w


     -1
k w w          (37) 

Integrating (36) both sides, we obtain 

  

    2

22

1

.
n

k i k L
i

C w C


 

    
-1

k w w w         (38) 

Hence, the coercivity of the bilinear form  

 ,a w w  :
l





 

      
-1

w w k w w  

   2 2

2 2

kl L L
C




  
  w w

 1

2
,c H

C


 w  

where  min / , .c kC C                   
We now ready to prove the existence and uniqueness of the 

Stokes-Brinkman equations. Though the following theorem 

have been shown in [20] and [21], we state here in the full 

form of completeness.   

  

Theorem 8. (Well-posedness of the Stokes-Brinkman 

equations) Assume that  1

1 ,H  f   2, f L f  and 

 1/2 .H s   There exists a unique    1 2

0,sH p L   v  

satisfying Problem 1, equations (20)-(21).  Moreover,   

       1 1 2 11

1
ˆ1a

H H L H

c c

C
n f

C C




   

  
     

   
v f v (39) 

where 0
ˆ  sv v v  and  

       2 1 2 11

1 1
.alL H L H

p n f C


 
   

 
   

 
f v     (40) 

where   is the constant in (23).  
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Proof. We note that the proof of the inequalities (39) and (40) 

are provided in [21]. Here we show the existence and 

uniqueness of the velocity by using Lax-Milgram theorem 

while the well-posedness of the pressure are shown in the 

second part by employing Theorem 4 and the definition of 

linear operators and their dual operators. 

Restrict    1 2

1 , ,H f L   f f  and  1/2 .H s   

From Theorem 3, we let 
0

ˆ . 
s

v v v  For any ,Vw  let 

     1
ˆ , .F c a w w v w  Since  1c   is linear and  ,a    is 

bilinear,  F   is linear. Moreover, the continuities of  1c   

and  ,a    imply that  F   is continuous.  By employing Lax-

Milgram theorem, there exists a unique  1

0V H  v  such 

that    , .a Fv w w  Define .  
s 0

v v v v  Because 

 1

0 ,V H  
0

v  and  1

0 , .V H    v v s  Since 

Vv  and , .f f    
0 s

v v v  We now have 

 1

sH v  satisfying the continuity equation. 

Next we show that v  is unique.  Since 

       1
ˆ, ,a F c a  v w w w v w  and ˆ , v v v   ,a v w  

 1 .c w   Let 
1

v  and 
2

v  satisfy    1,a c
1

v w w  and 

   1, .a c
2

v w w  Then  , 0a  
1 2

v v w  for any .Vw   

Thus,  , 0.a   
1 2 1 2

v v v v Therefore  0 ,a  
1 2 1 2

v v v v   

 1

2
0.c H

C


  
1 2

v v  Since 
 10, 0.c H

C


  
1 2

v v   

Then 
1 2v = v  in the  1H  -norm.   

To show that there exists  2

0p L   satisfying Problem 1 

or 6, we define 
1F  such that  1 1, .F cw w  Since 

     1
ˆ, , ,a c a v w w v w       1

ˆ, , 0c a a  w v w v w  or 

1
ˆF A A  v v  0,  in operator notation, 0

1
ˆ .F A A V  v v   

Let  2 0

0: .B L V      From Theorem 4 and the 

isomorphic property, there exists a unique  2

0p L   such 

that 
1 1

ˆB p F A A F A     v v v  or 
1.A B p F v               

 

V. CONCLUSION 

In this study, we employ the macroscale Stokes-Brinkman 

equation for coupled free-fluid/porous-medium viscous flow 

using Hybrid Mixture Theory and nondimensionalization.  

The system of equations is established for the porous medium 

containing moving solid phases such as hairlike structure.  We 

show that the bilinear form  ,a    is continuous and coercive 

for n-dimensional permeability coefficient while it is 

presented in [20] only for a constant coefficient and in [21] for 

a second-order tensor. We also present the existence and 

uniqueness of the Stokes-Brinkman system of equations 

although this is provided in [21].  Numerical solutions of this 

model using a mixed finite element method will be provided 

in future work.   
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