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Abstract. In this paper, we give a generalization of the
Fourier-Hilbert transform on a class of Boehmians.
Further, we show that the Fourier- Hilbert transform of a
distribution is distribution which is analytic in the space
of distributions of compact support. Further properties
are also obtained .
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I. Introduction

Boehmians were first constructed as a
generalization of regular Mikusinski operators. The
minimal structure necessary for the construction of
Boehmians consists of the following elements: (i ) A
set J; (ii)A commutative semigroup (R,*); (iii) An
operation *: IXR — J such that for each x € J and
U1, U2, € R, f x (U1 *v2) = (f *v1) xvz; (V) A
collection 4 € RN such that: (a) If f,g €3, (&,) €
Afrxe,=g*e, for all n, then f=g; (b) If
(en), (0y) € 4, then (g, * 0,) € A. A is the set of all
delta sequences. Consider A = {(f,,&.):fn €
3,() EA fu*em = fn * €, VMm,n € NLIf
(for €0, (Gns On) € A, fo * O = (g, €), YM, M €
N, then we say (f, * 0,,) ~ (gn, €)- The relation ~
is an equivalence relation in A. The space of
equivalence classes in A is denoted by G(J,R,4).
Elements of G (S, R, 4) are general Boehmians.

Between I and G(J,R,4) there is a canonical
U*en)

(en)

The operation * can be extended to G(J,R,4)x

3 by Un) yp InD -y G(J,R,4), two type of
(en) (en)
convergence:

embedding expressed as f —

i-A sequence (h,) in G(J,R,4) is said to be §

convergent to h in G(3J,%R, 4), denoted by h,, i h, if
there exists a delta sequence (&,) such that (h, * &,),
(hxe,) €I, Vk,neN, and h, *xg, = h*xg as
n - o, in 3, for every k € N;

ii-A sequence (h,) in G(J,R,4) is said to be A
convergent to h in G (3, R, 4), denoted by h, — h, if
there exists a (&,) €4 such that (h, —h)*e, €
3,Vn € N,and (h,-h) x&, > 0asn - ©inS.

The following is equivalent for the statement of &
convergence: h, > h (n - «©) in G(J,R,4) if and
only if there is f,, fx € 3 and (&) € 4 such that

h, = [f:—kk Jh = [];—:] and for each k €N, f,, - fi
asn — oinJ.

Several integral transforms were extended to
various spaces of generalized functions; namely,
distributions [3,16,19], tempered distributions [7],
distributions of compact support
[16,19], ultradistributions [1,11], tempered
ultradistributions and tempered ultraBoehmians [1]
and many others.

Recently, many research works are devoted to
those inegral transforms that permit a factorization
property of Fourier convolution type. Among those
integrals we recall here are: Fourier transform, Mellin
transform, Laplace transform and some others that
have a lot of attraction; the reason this theory
becomes an object of study of integral transforms of
generalized functions and, hence, of Boehmians.

The Hilbert transform of f(x) via the Fourier
transform is defined by

. fu(¥):=
;fo (FI(x)cos(xy) —
FR (x)sin(xy))dx 1
where

FO):= 7, f(D)e ™™ dt:= FR(y) iFI().
FR(y) and FI(y) being the real and imaginary
components of the Fourier transform of f (¢t).
The convolution product of two functions is defined
as [16]

(F*9)© =7, f() f)glx —t)dy 2
and has a relationship with the Fourier transform
with the factorization property

F(f*9)() = F(HMF@ -



II. Fourier-Hilbert Transform of

Boehmians

To follow the results of this extension, reader is
acquainted to be familiar with the concept of
Boehmian spaces. If it were otherwise we refer to
[1—6,8—9,13,15,18] for more details.

Let D be the space of test functions of bounded
support over R. By delta sequence, we mean a subset
of D of sequences {§,,} such that :

I 8, (x)dx = 1; 3
Type equation here.
18,1l = S 16,(x)|dx < M,0 <M €R; 4
and
suppd,(x) = 0asn — o, 5
where suppd, (x) = {x € R: §,,(x) # 0}.
The collection of all delta sequences is usually
denoted as 4.
Preposition 1. Let {§,,} € 4, then we have

FRS,(y) = [ 8,(x) cos(xy)dx —
lasn - «© 6
and

FI8,(y) = [_8,(x) sin(xy)dx —
0asn — oo. 7

Let L/(R),L'(R) =L‘, be the space of complex
valued Lebesgue integrable functions. From
Preposition 1 we establish this theorem :

Theorem 2. Let f € L' then we have fy; (f *

60) () = fuf(y) asn - .
Proof Let f €L.{6,} €4, then using of

(11) implies
fu(f = 8,)(y) =
JZ FI(f = 8,)(x)cos xy + FR(f *
6,)(x)sin xy))dx 8

Since (f * 8,)(0) = [ f(0)8,({ — Ddt -
f(Q) asn - « we see that

FI(f *8)(x) = [ (f * 8,)(O)sin(x{)d¢
= [ 0@ - vsinGoagar

- ff(t)sin(xt)dt.

Similarly
FR(f * 6,)(x) = FR(f)(x) asn - .

Therefore, invoking above equations in (26) we get

fu(f *8)(¥) = fuf (y) asn — o,

Hence the theorem is completely proved.

By B, we denote the space of integrable
Boehmians, then f;: is a convolution algebra when
multiplication by scalar, addition and convolution are
defined as [9]

f_n _ ﬂ f_n In| _ fn*¥n+3gn*6n
k [5n] - [5n ’[sn] + [yn] =1 Sn*¥n 1

f_n In| _ fn*9n
[(Sn] * [yn] - [5n*7’n]
Each function f € L! is identified with the Boehmian

[f;nn]' Since [i—:] corresponds to Dirac delta

distribution &, the kth-derivative of each p € ;. is
defined as
D¥p = p = D¥6.
Following theorem has importance in the sense of
analysis.

Theorem 3. Let [g—:‘l] € [, then the sequence

and

fuf) ) = [, (FIfu ()cos (xy) +
FRf,,(x)sin(xy))dx
converges uniformly on each compact subset K of R.
Proof. By aid of Theorem 2 and the concept of
quotient of sequences we have

faf)O) = fu (fax 3) 0
- (2 )
~ i (2 @)

- ng_I;(y) asn — co.

where convergence ranges over compact subsets of
R.

The theorem is completely proved.

Let [g—"] € B, then by virtue of Theorem 3 we
k

define the Fourier-Hilbert transform of the Boehmian

[[’;—’;] € B as

f [g—’;] = lim,_.. f,. 9

on compact subsets of R.
Next objective is to establish that our definition is

fa _ @ .
well-defined. For, let [5—n] = [yn] in B, then
fa *Vm = gn * Oy, foreverym,n € N.

Hence, applying the Fourier-Hilbert transform to both
sides of above equation and using concept of
qoutients of sequences imply

fH(fn * Ym) = fH(gn * 571) = fH(gn * 6m)



In particular, for n = m, and considering Theorem 3
we get

mn—)oofon = limn—»wagn'
Hence,

a2 =752

f; is therefore well-defined.
Theorem 4. The transform fj, is linear.

Proof Let p; = [—’:l] and p, = [ :] be arbitrary in
B and a € C, then
p1tpz= [
Hence, we get
fulps +p2) = limn—mo(fy(fn *¥n) + fu(gn * n))

fn* Yn+gn*5n]
Sn*¥n

By Theorem 2 we get

};(pl + Pz) = limn—)oofon + limn—mongn
Hence

E(Pl +pp) = Em + Epz
Further, if « is a complex number then indeed,

fH(“Pl) = fH [ ]

= allmrl:wafn

= afupr
Hence the theorem is proved.
Theorem 5. Let p € B, and {¢;} € 4, then

fup * €2) = fup = fu(en * p)
Proof Let p = [ ] € B, then we have
E(p * En) = fH fn6 71] = limn—mofH(fn * En)

Hence, E(p * Sn) = limn—»ocfon = Ep
Similarly we proceed for f;p = fy; (&, * p).

This completes the theorem.

Following theorem is obvious.
Theorem 6. If f;; p; = 0, then p; = 0.

Theorem 7. The Fourier-Hilbert transform fy is
continuous with respect to the § —convergence.

5
Proof Let p,, = p in B;; as n = o, then we show

— & -
that fypn, = fup as n = . Using [15,Theorem 2.6]

we find f, x, fic € L', {8,} € A such that [f;—k"] =

pn,[g—k]=pandfn,k—>fkasn—>oo,kEN.
k

Applying the Fourier-Hilbert transform for both sides
implies fy fux = fu fxin the space of continuous
functions. Therefore, considering limits we get

Tl = 7 5

This completes the proof of the theorem.

Theorem 8. The Fourier-Hilbert transform f; is
continuous with respect to the 4 —convergence.

A
Proof. Let p, = p as n — o in f3;, then there is
{f»} € L' and {8} € 4 such that

(pn—p)*6n=[%]andeAOasn—wo

Thus by aid of Theorem 3 and the hypothesis of
the theorem we have

Fallon = p) % 6) = Fir [252%]

= fu (fa * Si)asn — oo
= fufanasn— o

- 0asn— 0.
Therefore f;; (p, — p) = 0 as n — . Thus

— A
fupn = fup asn — .

This completes the proof.

Lemma 9. Let [ ] € B .and § is the delta

distribution, then we have

l(]-o) -l
Proof Let p = [f—"] € [;1, then we have

(o) =75

- llmn—mo fH(fn * 6)

= limn—»cc fon'

AR

Theorem 10. The Fourier-Hilbert transform F~is
one-to-one.

Proof Let E[;—Z] =E[i—:] then we get

lim,_, fufn = lim,_ fugn- Hence

fH(limn—mo fn) = fH(limnaao gn) That is fo =
fug. The fact that Fy; is one-to-one implies f = g.

Hence the theorem is completely proved.

Hence



III. Fourier-Hilbert Transform of

Distributions

Denote by C(R) the space of smooth functions and
C'(R) the strong dual of C of distributions of compact
support over R.

Then, we have the following convolution theorem

for fy.
Theorem 11. (Convolution Theorem) Let f and

g € C then we have
fu(f * ) = [ (ka(x)cos(yx) +
ky(x)sin(yx))dx 10
where

ki(x) = FRf (x)F1g(x) + FIf (x)FRg(x)
and
ko(x) = FRf(x)FRg(x) — FIf (x)Flg(x).
Proof To prove this theorem it is sufficient to
establish that k1 (x) = FI(f * g)(x) and kz(x) =
FR(f * g)(x). We have

FI(f * g)(x)

- [ vto

—y)dr)cos(xy)
+ sin(xy))dy

- J._O:Of(y) J._O:Og(y —y)(cos(xy)

+ sin(xy))dydr
By change of variables and parity Fubiniz Theorem
implies

FIG =90 = [ 10 [ 9@ cosxtz+ 1)

+ sin(x(z
+7)))dzdr.

Taking into account the formulas cos(x(z +y)) =
cos(xz)cos(xy) — sin(xz)sin(xy) and sin(x(z +
¥)) = sin(xz)cos(xy) + cos(xz)sin(xy), Equation
(17) follows from simple computation.

Hence the theorem is completely proved.

The fact that cos(xy),sin(xy) € C gives
FIf,FRf € C'. Hence, we have the following
statement.

Definition 12. Let f € C' then we define the
distributional Fourier-Hilbert transform of f as
faf @) =
(FIf (x), cos(xy)) +
(FRf (x), sin(xy)). 11
The extended transform fyf is clearly well-defined
for each f € (.

Theorem 13.The distributional Fourier-Hilbert
transform fy f is linear.

Proof. Let f,g € (' then their components
FRf,FIf,FRg,Flg € C'. Hence,
fa(f + ) =

(FI(f + g)(x),cos(xy)) +
(FR(f + g)(x), sin(xy)).
By factoring and rearranging components we get that
fa(f + 9O = fuf W) + fug (-
Further,
fu(kf)(y) = (kFIf (x), cos(xy))
+ (kFIf (x),sin(xy)) +
Hence
fu(kH)(Y) = kfuf ).
This completes the proof of the theorem.
Theorem 14. Let f € C’ then the mapping fi f is
continuous .

Proof. Let {f,,},f € C''n € Nand f, - f as
n — oo, Then, we have

fufa) = (FIfp(x), cos(xy)) +
(FRfy(x),sin(xy))
— (FIf(x),cos(xy)) + (FRf (x), sin(xy))

= fuf(y) asn - co.
Hence the theorem is completely proved.

Theorem 15 The mapping f;; f is one-to-one.

Proof. Let f,g € C' and that f;f = f,g, then on
account of (11) we get

(FIf (x),cos xy) + (FRf(x),sin xy) =
(FIg(x),cos xy) + (FRg(x), sin xy)
Basic properties of inner product implies
(FIf (x) = FIg(x), cos(xy)) + (FRf (x) —
FRg(x),sin(xy)) = 0.
Hence FIf (x) = Flg(x) and FRf (x) = FRg(x).
Therefore
fuf () = FIf(x) + FRf (x) = FIg(x) +
FRg(x) = Ag(x)
for all x.
This completes the proof of the theorem.
Theorem 16. Let f € C/, then f is an analytic
mapping and
D¥fuf (v) = (FIf (x), Djcos(xy)) +
(FRf (x), Dy sin(xy)).
Proof is straightforward. Detailed proof is

therefore omitted.
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