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Abstract

In this paper we introduce a series solution for Lane-
Emden type equations. This solution based on La-
grange polynomials that can easily deal with singular-
ity problems. The proposed approximation is based
on non-equidistant interpolation points generated by
conformal maps. Our method provides the solution
by an exponential convergent series. This exponen-
tial convergence property arises from the use of Sinc
points as interpolation points in the Lagrange polyno-
mials. We examine the technique for different types
of Emden’ equations and compare the solution with
exact solution and Taylor approximation.

1 Introduction

The Lane-Emden (LE) equation is one of the basic
equations in the theory of stellar structure and has
been the focus of several studies [1, 2, 3]. In general,
LE type equations are nonlinear ODEs that can be
formulated as:

y′′ +
κ

x
y′ + g(y) = R(x), x > 0 (1)

with the initial conditions,

y(0) = a, y′(0) = b.

In general, g(y) is a nonlinear function of y, R(x)
is a function of x only and, κ is a positive integer.
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Many problems in mathematical physics and astro-
physics are related to this equation. Some of these
applications are homogeneous, R(x) = 0, and others
are inhomogeneous. For every physical application a
suitable choice of the generic function g(y) is made.

To motivate the astrophysical background of LE,
let us consider a spherical cloud of gas and denote its
hydrostatic pressure at a distance r from the center
by P . Let M(r) be the mass of a star, and ρ its
density. Then Poisson’s equation and the condition
for hydrostatic equilibrium can be stated as [See [1]]:

dP

dr
= −ρGM(r)

r2
, (2)

dM(r)

dr
= 4πρr2, (3)

where G is the gravitational constant. Combining (2)
and (3), an equivalent form of the Poisson equation
can be written as:

1

r2
d

dr

(

r2

ρ

dP

dr

)

= −4πGρ. (4)

Assuming that P is dependent on the density ρ
and independent of the temperature, the polytropic
pressure relation can be stated as

P = kρ1+
1

m , (5)

where k is a constant and m is the poly tropic in-
dex related to the ratio of specific heats of the gas
comprising the star.
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Let λ represents the central density of the star and
y is a dimensionless quantity that are related to ρ by
the following relation:

ρ = λym. (6)

We are able to standardize the polytropic pressure
equation by inserting (5) and (6) in (2) to find

[

k(m+ 1)

4πG
λ

1

m
−1

]

1

r2
d

dr
(r2

dy

dr
) = −ym. (7)

Finally, let us define a dimensionless variable x as:

r =

√

k(m+ 1)

4πG
λ

1

m
−1x. (8)

Then (7) will be,

y′′ +
2

x
y′ + ym = 0, x > 0, (9)

with the conditions,

y(0) = 1, y′(0) = 0,

which is the standard form of the LE equation intro-
duced in (1) with parameter m an integer taken from
the interval [0, 5].

One of the main problems with the LE equation is
the singularity at x = 0 which is a singularity at the
boundary as well as of the equation. This singularity
was a challenge for many scholars to numerically rep-
resent the solution of the LE equation. The problem
of a reliable representation of the solution was actu-
ally discussed by both Lane and Emden [4, 5] in their
earlier examinations. Since its establishment the im-
portance of the equation (9), number of applications
increased during the years. Even today there is an
increasing need to find a reliable and accurate way to
approximate its solutions.
The standard LE equation has analytic solutions

for m = 0, 1, and 5. For the other values of m, to our
best knowledge, analytic solutions are missing and
thus the equation must be integrated numerically to
get at least an approximate solution.
The LE equation was examined with respect to the

numerical stability by many authors, for example see

[6, 7, 21] and references therein. On the other hand
analytic examinations of LE equations as well were
performed by different groups [2, 8].

Most of the techniques used to solve the LE equa-
tions and its types are based on either series solu-
tion, Adomain decomposition or perturbation tech-
niques [8, 9, 10]. Although the series solutions can
be obtained by monotonous computations but they
must be modified to adapt the singularity at x = 0.
This singularity is not always easy to handle espe-
cially on finite intervals. For example, when using
series approximations on a finite interval the Runge
phenomenon may arise to give an inaccurate approx-
imation near the end points of the intervals [11]. To
overcome the Runge phenomenon, the use of Cheby-
shev polynomial approximation has become an ac-
curate way to solve many problems in applications.
The results of a Chebychev approximation are usu-
ally very accurate, except if singularities are present
at end-points of the interval of approximation [6].

Another approach to tackle the problem of singu-
larity is the Adomain decomposition method. This
method is currently used by some authors [8, 10] to
compute the series solution for the LE but also ap-
plicable to other models than LE. The Adomain de-
composition method accurately computes the series
solution in a rapidly convergent way.

The core question again is: how can the series ap-
proximation method be modified to address the prob-
lem of singularity. The offered answers vary from
equation to equation and sensitively depends on the
type of singularity [9, 10].

In this paper, we aim to introduce a Lagrange
polynomial approximation at some non-equidistant
points, so called Sinc points. We also aim to define
a collocation scheme to establish Polynomial-Sinc, in
short Poly-Sinc, approximation. Finally we use this
scheme to solve well-known LE type equations clas-
sified by (1) for various g(y) and R(x).

This paper is organized as follows: In section 2, the
Poly-Sinc interpolation formula is described. In sec-
tion 3, we introduce the Poly-Sinc algorithm based on
the approximation proposed in section 2. In section
4, we apply the Poly-Sinc algorithm to solve the stan-
dard LE equation. In section 5, solutions of classes of
homogeneous and inhomogeneous differential equa-
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tions of LE type are discussed. Concluding remarks
are given in section 6.

2 Poly-Sinc Interpolation

Different sets of points {xk, f(xk)}nk=0 are used as
interpolation points in Lagrange polynomial approx-
imation [12]. The most famous set of points are the
equidistant points. It is well known that these points
deliver bad results [13]. To improve the accuracy
of Lagrange approximation other sets of points are
used, like Chebychev points and modified Chebychev
points [12]. Recently it was shown that it is more
effective to use Sinc points as interpolation points
[14, 25]. This sequence of points is created using a
conformal map that redistribute the infinite equidis-
tant points of the real line on a finite interval locating
most of these points near the end-points of the finite
interval. It is also proved that using Sinc-points as
interpolation points will deliver a high accurate ap-
proximation and allows an accuracy similar to the
classical Sinc approximation [14].
To define these interpolation points let Z denote

the set of all integers. Let R be the real line, and C

denote the complex plane. Let h denote a positive
parameter and let k ∈ Z, x ∈ C. In addition, let
d denote a positive number, and let φ denote the
conformal map of a simply connected region D ⊂ C

onto the strip

Dd = {z ∈ C : |Im(z)| < d}.
Let Γ = φ−1(R) be an arc and let a = φ−1(−∞)

and b = φ−1(∞) denote the end points of Γ. Then
we define the set of Sinc points by xk = φ−1(kh), and
set ρ = eφ(x).
Finally, let α ∈ (0, 1] and β ∈(0,1] denote fixed

positive numbers. Without loss of generality, let us
restrict d introduced above to the interval (0, π). Let
Lα,β(D) denote the family of all functions that are
analytic in D, such that for all z ∈ D, we have

|y(z)| ≤ c1
|ρ(z)|α

[1 + |ρ(z)|]α+β
.

The space of functions Mα,β(D) denotes the set of
all functions q defined on D that have finite limits

q(a) = limz→a h(z) and q(b) = limz→b q(z), where
the limits are taken from within D, and such that
y ∈ Lα,β(D), where,

y = q − q(a) + ρq(b)

1 + ρ
.

Now we are in position to define a set of Sinc data
of the form {xk, y (xk)}Nk=−M where the xk are Sinc

points and {y (xk)}Nk=−M are the function values. Let
xk be the Sinc points defined on the interval [a, b].
These points are generated using the conformal map
φ(x) = ln((x− a)/(b−x)) and so the Sinc points can
be given by:

xk = φ−1(kh) =
a+ bekh

1 + ekh
, k = −M, ..., N. (10)

Next we define a family of polynomial-like approx-
imation that interpolate given Sinc data of the form
{xk, y(xk)}Nk=−M where the xk are Sinc points de-
fined in (10). This novel family of Lagrange polyno-
mials was recently derived in [18]. The approxima-
tion is accurate, provided that the function y with
yk = y(xk) belongs to the space of analytic functions
Lα,β(D).

Generally Lagrange polynomial approximation
over the interval [a, b] is defined in the following way.

Given a set of n =M+N+1 Sinc points {xk}Nk=−Mon
the interval [a, b] as defined in (10) and function val-

ues, {y(xk)}Nk=−M . At these points {xk, y(xk)}Nk=−M ,
there exists a unique polynomial p(x) of degree at
most n− 1 satisfying the interpolation condition,

p(xk) = yk, k = −M, ..., N.

In this case p(x) can be expressed as:

p(x) =

N
∑

k=−M

bk(x)yk, (11)

with,

bk(x) =
v(x)

(x− xk)v′(xk)
, (12)

where,
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v(x) =
N
∏

j=−M

(x− xj) .

This approximation, like regular Sinc approxima-
tion, yields an exceptional accuracy in approximating
the function that is known at Sinc points [15]. Un-
like Sinc approximation, it gives an exponential con-
vergence rate when differentiating the interpolation
formula given in (11), [14].
For the sake of simplicity of our results, we shall

assume here that M = N .

Theorem 1. Let h = π√
N
, and let {xk}Nk=−Ndenote

the Sinc points as defined in (10). Let y be in
Mα,β(D), and let p(x) be defined as in (11). Then
there exist two constants A > 0 and B > 0, indepen-
dent of N , such that

|y(x)− p(x)| ≤ A

(√
N
)

B2N
exp

(

−π2N
1

2

2

)

, (13)

Proof 1. For the proof of (13), see [14].

The space Mα,β(D) is connected with a Hardy
space Hp(U), where U is the unit disk. In Hp(U)
the best approximation rate of the form O

(

e−c
√
N
)

has been obtained [16]. The constant c = π
2 in our

own estimate is not large as this optimal upper bound
of the error discussed in [16] as c = π, but it is still
an excellent upper bound comparing with the upper
bounds in Sinc approximations. The optimal distri-
bution of the sequence of points to be chosen on the
interval [a, b] is still an open problem till now [13, 16],
but one can see that the approximation we introduced
here give an exceptional upper bound of error. In fact
getting an exponential decaying rate of convergence
is not only the privilege of this approximation, but
dealing effectively without any modification with the
singularity at the end points.

3 Poly-Sinc Algorithm

In this section we set up a collocation method based
on Lagrange interpolation at Sinc points. To do this,

let us consider the nonlinear differential equations of
order 2 defined on the interval (a, b) as:

L(u) ≡ u′′ + l1(x, u)u
′ + l2(x, u) = f(x), a ≤ x ≤ b.

(14)
With the boundary conditions:

u(a) = u0 and u(b) = u1, (15)

where the functions l1(x, u), and l2(x, u) are func-
tions of x and u which are nonlinear (or linear), and
singular (or non-singular). The existence and unique-
ness of the solution of (14-15) is discussed by Agarwal
and Akrivis in [17].

The idea of the Poly-Sinc algorithm is to replace
u(x) in equation (14) and (15) by the Lagrange poly-
nomial defined in (11). This will reduce the problem
to a system of 2N + 1 algebraic equations.

To set up the Poly-Sinc algorithm, we will present
it in details using the following Mathematica lines.
To do this we start the algorithm by defining the
conformal mapping and Sinc points on the interval
[a, b].

Defining the conformal map φ(x) as,

φ[x ]:=Log
[

x−a

b−x

]

Where its inverse conformal map ψ(x) = φ−1(x)
can be defined as,

ψ[x ]:=bex

−a

1+ex

The Sinc points are defined by calculating ψ(x) at
x = kh

Nu = val1;Ml = val2;

where, val1 and val2 are positive integers.

sp[k ]:=ψ[kh]/.h → π
√

Nu
;

We then define the Poly-Sinc interpolation formula
(11). First we need to define the function v(x) and
its derivative at Sinc points, v′(x).

For v(x),

v[x ]:=Product[(x− sp[l]), {l,−Ml,Nu}]

4
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Differentiate v(x) with respect to x to get the func-
tion dv(x)

dv[x ]:=∂xv[x]

Calculating dv(x) at Sinc points as,

dvs[i ]:=dv[x]/.x → sp[i]

Now defining the basis functions bk(x) as,

b[x , k ,N ,M ]:=v[x]/((x− sp[k])dvs[k])

The Lagrange interpolation formula at Sinc data,
(11), can be define by the following line,

p[x ,N ,M ]:=
∑N

k=−M b[x, k,N,M ]u[k]

The first step to solve (14–15) is to replace u(x) in
(14) by the polynomial p(x) defined in (11),

stepColl1 = N [∂x,xp[x,Nu,Ml]+

l1[x, p[x,Nu,Ml]]∂xp[x,Nu,Ml]

+ l2[x, p[x,Nu,Ml]] == f [x]];

The second step is to evaluate the result at the
Sinc points xj = ψ(jh), j = −M + 1, ..., N − 1. This
delivers a nonlinear system of 2N − 1 equations.

stepColl2 = Map[(stepColl1/.x → #)&,

Table[sp[k], {k,−(Ml − 1),Nu − 1}]];

Now to the boundary conditions in (15),

B1 = (p[a,Nu,Ml]//N) == u0;

B2 = (p[b,Nu,Ml]//N) == u1;

Combining the (2N−1) equation from stepColloca-
tion2 and the collocated boundary conditions, bound-
ary1 and boundary2, to get a system of (2N + 1) of
algebraic equations,

AppendTo[stepColl2, {B1,B2}];

stepColl3 = Flatten[stepColl2];

Now the differential equation transformed to a sys-
tem of (2N + 1) algebraic equations in (2N + 1) un-
knowns, u[k], k = −N, ..., N . Creating the 2N + 1
algebraic system, the discretized form of p′(x) at Sinc
points, xj = ψ(jh) is needed. To get p′(xj), we dif-
ferentiate (11) with respect to x and then evaluate
the result at the Sinc points xj to get.

f ′(xj) ≈ p′(xj) =

N
∑

k=−N

aj,k f(xk) , (16)

where aj,k , j, k = −N, ..., N defines a n × n, n =
2N + 1 matrix A defined as,

A =











v′(xj)
(xj−xk)v′(xk)

k 6= j.

∑N
l=−M,l 6=j

1
xj−xl

k = j.

(17)

Also the discretized form of p′′(x), p′′(xj) with
xj = ψ(jh), is required. To get p′′(xj), we differen-
tiate (11) twice with respect to x and then evaluate
the result at the Sinc points xj to get,

p′′(xj) =
N
∑

k=−N

cj,kuk, (18)

where a matrix C = cj,k defined as,

C =















−2v′(xj)
(xj−xk)2v′(xk)

+
v′′(xj)

(xj−xk)v′(xk)
if k 6= j

∑N
n=−N

∑N
l=−N
l,n6=j

1
(xj−xl)(xj−xn)

if k = j.

(19)
Now we are in a position to solve the system of alge-

braic equations. To solve this system we use Newton
root finding method to evaluate the coefficients, u[k].
Finally inserting the coefficients values, u[k], in the
approximate polynomial p[x,Nu,Ml] to get the Poly-
Sinc approximate solution for the equation (14–15).

For practical purposes, we will use two forms of
errors:

• Absolute Error The Absolute error is given by:

E = |u(x)− uap(x)| (20)
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• Norm Error the norm error is given by:

ǫ = ‖u(x)−uap(x)‖ = [

∫ b

a

(u(x)−uap(x))2 dx]
1

2 ,

(21)

where u(x) is the exact (or analytic) solution and
uap(x) is the approximation obtained from the
Poly-Sinc algorithm.

4 Solution of Standard LE-

Equation

In this section we examine the Poly-Sinc collocation
algorithm to solve the standard LE equation. This
equation is used to model the thermal behavior of a
spherical cloud of gas acting under the mutual attrac-
tion of its molecules and subject to the classical laws
of thermodynamics [1, 4]. The standard equation can
be given by:

y′′ +
2

x
y′ + ym = 0, x ∈ [0, x1], (22)

with the boundary conditions:

y(0) = 1, y′(0) = 0 and, y(x1) = y1.

This equation allows analytic solutions for m =
0, 1 and, 5 given by:

y = 1−x
2

6
, y =

Sin(x)

x
, and y =

(

1 +
x2

3

)

−1

2

, (23)

respectively. To our best knowledge these three
solutions are the only analytic solutions known in lit-
eratures [4, 5]. For m = 2, 3, 4 there are many papers
discussing different numerical techniques to get ap-
proximate solutions [6, 7, 8, 18, 19].
To check the validity of Poly-Sinc algorithm de-

fined in section 3, let’s start with the case whenm = 1
and compare the approximate solution with the given
exact solution.

• For m = 1:
The target here is to apply the Poly-Sinc algo-
rithm introduced in section 3 to get an approxi-
mate solution for,

0.5 1.0 1.5 2.0 2.5 3.0
x

0.2

0.4

0.6

0.8

1.0

yap

Figure 1: Exact and approximate solution of stan-
dard LE, (24).

0.0 0.5 1.0 1.5 2.0 2.5 3.0

10-7

10-6

10-5

10-4

x

Èy
-

y a
p
È

m=1

Figure 2: |y − yap| for (24) with N = 3.

y′′ +
2

x
y′ + y = 0, x ∈ (0, π], (24)

y(0) = 1, y′(0) = 0 and, y(π) = 0.

Which has the exact solution,

y =
sin(x)

x

Figure 1 represents the exact solution, solid line,
and approximate solution, dashed line.

Figure 2 displays the absolute error as a logarith-
mic plot using N = 3 in the Poly-Sinc calculations.
Calculating the norm error ǫ based on the norm
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using (21) results to 10−4 for this small number of
collocation points, 7 Sinc points.
To illustrate the exponential convergence rate of

the Poly-Sinc algorithm, we examined the error esti-

mation form (13), γ
√
NE−µ

√
N , where γ and µ are

constants. We need first to build a list of errors for
different numbers of Sinc points as follow,

error = {};

error1 = AppendTo[error, {15, normerror}];

{{5, 0.00551426}, {7, 0.000190525},
{9, 4.72421573× 10−6}, {11, 7.6947705067× 10−8},
{13, 6.75211944171×10−10}, {15, 5.7521195×10−11}},

Now, defining the error function of the error,

γ
√
NE−µ

√
N :

Expfunction = γ
√
xe−µx0.5

The point now is to find the values of the constants
µ and γ that fit the error list created above,

parameters = FindFit[error1,Expfunction,

{γ, µ}, x,Method → NMinimize]

{γ → 233857., µ→ 8.49929}

So the error function is,

Fitfunction = Expfunction/.para

233857.
√
x.e−8.49929x0.5

Figure 3 demonstrates that the error of the Poly-
Sinc algorithm has an exponentially decaying rate.
The approximation of the LE equation for m = 1

demonstrates that the Poly-Sinc algorithm works
properly. The verification of the m = 1 case puts
us in a position to discuss the other cases for the
parameter m = 2, 3, 4 that have no exact solutions.
For these cases, m = 2, 3, 4, we apply the poly-Sinc

4 6 8 10 12 14

10-9

10-7

10-5

0.001

0.1

n

Ε

Figure 3: The error for different Sinc points n =
3, 5, 7, 11, 13, 15 for (24).

algorithm introduced in section 3. For the compari-
son purpose, we consider the series solution derived
by Airey [20]. He derived series solution of equation
(22) by applying a Taylor expansion about x = 0 for
different values of m ∈ [0, 5]. The following solution
for y was obtained using Airey’s approach for general
m ∈ [0, 5]:

y(x) = 1− x2

3!
+m

x4

5!
+ (5m− 8m2)

x6

3.7!

+(70m− 183m2 + 122m3)
x8

9.9!
(25)

+(3150m− 1080m2 + 1264m3

−5032m4)
x10

45.11!
+ ....

Here, the expansion will carried out by us over a
suitable range of x ∈ [0, x1] where y(x1) = y1.

• For m = 2
Figure 4 shows the approximate solution using
Poly-Sinc algorithm, dashed line, and the series
solution defined in (25), solid line.

Figure 5 represents the absolute error |y − yap|,
where y is the series solution defined in (25) and
yap is the solution using Poly-Sinc algorithm us-
ing 13 Sinc points.

And calculating the norm error to get, ǫ =
7.39605 ∗ 10−6.
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0.2 0.4 0.6 0.8 1.0
x

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

yap

Figure 4: The analytic and approximate solution for
LE with m = 2 and N = 6.

0.2 0.4 0.6 0.8

10-11

10-10

10-9

10-8

10-7

10-6

10-5

x

Èy
-

y a
p
È

m=2

Figure 5: The absolute error in case m = 2 and N =
6.

0.2 0.4 0.6 0.8 1.0
x

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

yap

Figure 6: The analytic and approximate solution for
LE with m = 3 and N = 6.

0.2 0.4 0.6 0.8
10-11

10-10

10-9

10-8

10-7

10-6

10-5

x

Èy
-

y a
p
È

m=3

Figure 7: The absolute error in case m = 3 and N =
6.

• For m = 3

Figure 6 shows the approximate solution using
Poly-Sinc algorithm, dashed line, and the series
solution defined in (25), solid line.

Figure 7 represent the absolute error |y − yap|,
where y is the series solution defined in (25) and
yap is the solution using Poly-Sinc algorithm us-
ing 13 Sinc points.

And calculating the norm error to get, ǫ =
1.27518 ∗ 10−5.

• For m = 4
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0.2 0.4 0.6 0.8 1.0
x

0.88

0.90

0.92

0.94

0.96

0.98

1.00

yap

Figure 8: The analytic and approximate solution for
LE with m = 4 and N = 6.

0.2 0.4 0.6 0.8

10-11

10-10

10-9

10-8

10-7

10-6

10-5

x

Èy
-

y a
p
È

m=4

Figure 9: The absolute error in case m = 4 and N =
6.

Figure 8 shows the approximate solution using
Poly-Sinc algorithm, dashed line, and the series
solution defined in (25), solid line.

Figure 9 represent the absolute error |y − yap|,
where y is the series solution defined in (25) and
yap is the solution using Poly-Sinc algorithm us-
ing 13 Sinc points.

And calculating the norm error to get, ǫ =
6.6599 ∗ 10−6.

Finally we collect all of the cases for m ∈ [0, 5]
with the norm error in each case in table 1. For all
the calculations we apply Poly-Sinc algorithm with
n = 13 Sinc points.

m Equation Interval ǫ
0 y′′ + 2

x
y′ + 1 = 0 [0, 1] 10−7

1 y′′ + 2
x
y′ + y = 0 [0, π] 10−10

2 y′′ + 2
x
y′ + y2 = 0 [0, 1] 10−6

3 y′′ + 2
x
y′ + y3 = 0 [0, 1] 10−5

4 y′′ + 2
x
y′ + y4 = 0 [0, 1] 10−6

5 y′′ + 2
x
y′ + y5 = 0 [0, 1] 10−12

Table 1: The obtained error using (21) for standard
LE for m = 0, 1, 2, 3, 4, and 5, using 13 Sinc points

Note:
The solution of the standard LE-equation showed two
points of interest in using Poly-Sinc technique in solv-
ing the nonlinear singular boundary value problems.
These two points are:

1. Using a small number of Sinc-points we can reach
a very small error level. In comparison with
other collocation techniques we can get the same
or even better error using a much smaller num-
ber of collocation points. For example, in [21]
a collocation technique based on Hermit poly-
nomial was introduced to solve the standard LE
equation for m = 3 and m = 4. With 31 colloca-
tion points an error of 10−4 has been obtained,
while using 13 collocation points in Poly-Sinc al-
gorithm we can get 10−5 and 10−6 respectively.

2. The numerical investigation of Poly-Sinc algo-
rithm for solving standard LE-equation show
that it has an exponentially decaying error prop-
erty. This property arises when using Sinc meth-
ods and it is now in the Poly-Sinc method.

5 Emden-Type Equations

In this section, we present various types of LE equa-
tions discussed in literatures [1, 2, 3, 6]. We classify
these models as homogeneous R(x) = 0 and inho-
mogeneous LE equations R(x) 6= 0 in (1). We start
with the discussion of homogeneous and then switch
to inhomogeneous one.
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5.1 Homogeneous Equations

In this section, we set R(x) = 0, α = 2 in (1), and
present various forms of g(y) that have attracted at-
tention, due to their significant applications. For ex-
ample, an interesting form of g(y) is g(y) = ey this
model describes an isothermal gas sphere with a con-
stant temperature setting m to be infinite. On the
other hand, inserting g(y) = e−y into (1) creates
a model that appears in the theory of thermionic
currents thoroughly investigated by Richardson [3].
Furthermore, the function g(y) appears in eight ad-
ditional cases [2], namely, four trigonometric forms
defined by, g(y) = ± sin(y) and g(y) = ± cos(x)
and four hyperbolic functions, g(y) = ± cosh(y) and
g(y) = ± sinh(x). A detailed discussion of the for-
mulation of these models and the physical meaning
of the solutions can be found in [1, 3].

Example 1. Isothermal gas spheres equation

y′′ +
2

x
y′ + ey = 0, x > 0 (26)

y(0) = 1, y′(0) = 0, y(1) = x0

This model can be used to examine isothermal gas
spheres, where the temperature remains constant and
the index m is infinite [2].

Only one particular solution of (26) is known,
namely, y = ln

(

2
x2

)

. This equation has been solved
by using series expansion [2, 22] and by using Ado-
mian decomposition [9, 23]. This solution can be
given as:

y(x) = − 1

6
x2 +

1

5× 5!
x4 − 8

21× 6!
x6

+
122

81× 8!
x8 − 61× 67

495× 10!
x10. (27)

We apply the Poly-Sinc algorithm to solve the
isothermal gas spheres equation (26).
Figure (10) represents the approximate Poly-Sinc

solution, dashed line, together with the analytic so-
lution defined in (27), solid line.
Figure (11) displays the absolute error as a loga-

rithmic plot using N = 6 in the Poly-Sinc calcula-
tions, means 13 Sinc points.

0.2 0.4 0.6 0.8 1.0
x

-0.15

-0.10

-0.05

yap

Figure 10: The exact and approximate solution of
(26) with N = 6.

0.2 0.4 0.6 0.8

10-12

10-11

10-10

10-9

10-8

10-7

10-6

x

Èy
-

y a
p
È

N=6

Figure 11: |y − yap| for (26) N = 6.
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Calculating the norm error ǫ based on the norm
using (21) results to 10−6 for this small number of
collocation points, 13 Sinc points.

Example 2. Richardson’s theory of thermionic cur-
rents

Richardson [3] introduced a counter equation to
(26) in which ey is replaced by e−y. The model is
given by the nonlinear differential equation and its
boundary conditions as:

y′′ +
2

x
y′ + e−y = 0, x > 0 (28)

y(0) = 1, y′(0) = 0, y(1) = x0.

This model appears in Richardson’s theory of
thermionic currents when the density and electric
force of an electron gas in the neighborhood of a hot
body in thermal equilibrium is to be determined [3].
Equation (28) has a series solution based on using
Adomain polynomial and can be given by [9]:

y(x) = − 1

6
x2 − 1

5× 5!
x4 − 8

21× 6!
x6

− 122

81× 8!
x8 − 61× 67

495× 10!
x10. (29)

Figure (12) represents the analytic series solution
defined in (29), solid line, and the approximate solu-
tion obtained from applying Poly-Sinc algorithm with
13 Sinc points, dashed line.
Figure (13) represents the absolute error between

the approximate solution using the Poly-Sinc algo-
rithm and the series solution in (29).
With this small number of Sinc collocation points,

13 Sinc points, we can get a norm error equal to ǫ =
1.96202 ∗ 10−7.

Example 3. Trigonometric and hyperbolic models

In this part we will consider some other additional
cases of g(y) used in (21) that are discussed in [2],
namely trigonometric and hyperbolic functions.

y′′ +
2

x
y′ + g(y) = 0, x > 0 (30)

y(0) = 1, y′(0) = 0, y(1) = x0,

0.2 0.4 0.6 0.8 1.0
x

-0.15

-0.10

-0.05

yap

Figure 12: The exact and approximate solution of
(28) with N = 6.

0.2 0.4 0.6 0.8
10-13

10-11

10-9

10-7

x

Èy
-

y a
p
È

Figure 13: |y − yap| for (28) N = 6.
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Equation Error
y′′ + 2

x
y′ + sin(y) = 0 10−6

y′′ + 2
x
y′ + sinh(y) = 0 10−6

y′′ + 2
x
y′ + cos(y) = 0 10−7

y′′ + 2
x
y′ + cosh(y) = 0 10−12

Table 2: The norm error for homogeneous LE
equation- type for different g(y) and R(x) with N =
6.

where g(y) = sin(y), cos(y), sinh(y). For all of the
cases of g(y) table 2 represents the norm error be-
tween the approximate solution using Poly-Sinc al-
gorithm and the analytic series solution discussed in
[2].

5.2 Inhomogeneous Equations

In this section a collection of inhomogeneous form of
the LE type equations (1) is discussed. Some of these
equations contain a singularity at x = 0 in the first
derivative term only [10, 18, 24] and others have the
singularity in both terms that are including the first
derivative and the function y(x) itself [10]. These
types of equations have been solved using different
techniques. Some of these techniques are differential
transformation as in [24], Adomian decomposition as
in [10] or, Taylor series [24]. Here we use the Poly-
Sinc to solve examples of these inhomogeneous equa-
tions.

Example 4.

y′′ +
4

x
y′ +

2

x2
y = 12, x > 0 (31)

y(0) = 1, y′(0) = 0,

This equation is an inhomogeneous equation de-
fined on the interval (0,∞) and has a singularity at
x = 0.

In all of the previous examples, the equations were
defined on finite intervals. The current example is
defined on a semi-infinite interval, (0,∞). So a mod-
ifications in the definitions of the conformal mapping

2 4 6 8 10 12 14
x

50

100

150

200

y

Figure 14: The exact and approximate solution of
(31) with N = 6.

from the semi-infinite interval onto R is needed. This
conformal map is,

φ[x ]:=Log [x]

In this case its inverse conformal mapping can de-
fined as,

ψ[x ]:=ex

The Sinc points on the interval (0,∞) is,

sp[k ]:=ψ[kh]/.h → π
√

Nu
;

Now applying the Poly-Sinc algorithm to get an
approximate solution of (31) on (0,∞).

Figure (14) represents the analytic solution of
the inhomogeneous equation (31), solid line and the
Poly-Sinc approximate solution with 13 Sinc points,
dashed line.

Calculating the norm error ǫ using (21) to get ǫ =
8.5 ∗ 10−4,

Table 3 summaries a collection of different inhomo-
geneous equations. Also it presents the norm error ǫ
defined in (21) gained from comparing the approxi-
mate Poly-Sinc solution and the exact solution.
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κ g(y) R(x) yex ǫ

2 y x2 x3 + x2 10−11

2 xy x5
− x4 + 44x2

− 30x x4
− x3 10−15

2 y x5 + 30x2 x5 10−12

2 y3 x6 + 6 x2 10−14

6 6y

x2 + y2 20 + x4 x2 10−14

Table 3: The obtained error using (21) for different
inhomogeneous LE equations

6 Conclusion

The goal of this paper is to construct an approxima-
tion to the solution of nonlinear Lane- Emden type
equations in finite and semi-infinite intervals. La-
grange approximation at Sinc data is proposed to pro-
vide an effective but simple way to improve the con-
vergence of the solution by the collocation method.
In some examples, a comparison is made between
the exact and the approximate solution obtained by
Poly-Sinc. Other examples of the examination com-
pare between the series solutions and the approxi-
mation based on Poly-Sinc algorithm. It has been
shown that the present work offers an effective ap-
proach for Lane-Emden type equations. Also we con-
firmed by logarithmic plots of the norm error, that
this approach has an exponential convergence rate
similar to the classical Sinc approximation. In total
the Poly-Sinc method has three different properties:
easy to compute and implement, exponential conver-
gence, and handling all kind of singularities without
modifications of the numerical scheme, which means
that any solution can be represented to arbitrarily
high accuracy for a small number of Sinc points.
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