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Abstract: In the present paper we investigate the condition of inhomogeneous plane waves propagation in cubic crystals subject to 

initial deformations and electric fields.The author obtains here the components of the electroacoustic tensor and the velocities of 

propagation as closed-form solutions.We show the influence of electrostrictive and piezoelectric effects on wave propagation in such 

media. We analyze the influence of the initial  fields on the waves polarization in two main cases: (i)propagation in isotropic 

directional bivectors;(ii)propagation in case of polar anisotropic directional bivectors.  
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1. Introduction  

In  the last years many authors have paid attention 
to the dynamics of electroelastic materials, which are 
subject to initial mechanical and electric fields. The basic 
equations of  piezoelectric bodies for infinitesimal 
deformations and fields  superposed on the initial 
deformations and electric fields, were given by Erigen 
and Maugin in their monograph [6].An alternative 
derivation of the equations of this type was obtained by 
Baesu and Soos in [1].The problem of waves propagation  
in elastic crystals and in piezoelectric crystals  is 
presented in [10].In [16] the fundamental equations for 
piezoelectric crystals subject to initial fields have been 
re-established and important results concerning the 
dynamic and static local stability conditions of such 
media obtained. 

In [11,12,13,14,15,16],Simionescu studied the  
propagation conditions of plane waves in cubic crystals 
subject to initial deformations and electric fields. In this 
paper we generalize the previous results, studying the 
problem of inhomogeneous plane waves in cubic crystals 
subject to initial electro-mechanical fields. We assume  
that the material is subject to initial electro-mechanical 

fields having small intensity. The propagation of 
elliptically polarized inhomogeneous plane waves has 
applications in many areas including Rayleigh, Love and 
Stoneley waves in classical linear elasticity theory. This 
concept may be found in paper [2] for anisotropic 
elasticity, in [3] for electromagnetism , in [4] for elastic 
materials with voids , in [5] for Hadamard material , or in 
[9] for viscoelasticity. In [17] we obtained the conditions 
of inhomogeneous plane wave propagation in monoclinic 
crystals subject to initial electromechanical fields. The 
concept of  “bivector “ is described in [8] .The algebra 
of  bivectors is well established in [3,7,18]. 
   In this paper we derive the decomposition of the 
propagation condition for particular isotropic /anisotropic 
directional bivectors , and we show that the specific 
coefficients are similar to the case of guided waves 
propagation in cubic crystals subject to a bias (see [16], 
to compare).  

2. Basic equations 

The basic equations of piezoelectric bodies for 
infinitesimal deformations and fields superposed on 
initial deformations and electric fields were given by 
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Eringen and Maugin in their monograph [6].An 
alternative  derivation of these equations was 
obtained by Baesu, Fortune and Soos in [1]. 
     We assume the material is an elastic dielectric, 
which is nonmagnetizable and conducts neither heat, 
nor electricity. We shall use the quasi-electrostatic 
approximation of the equations of balance. 
Furthermore, we assume that the elastic dielectric is 
linear and homogenous , that the initial homogenous 
electric field has small intensity. To describe this 
situation we use three different configurations: 
• The reference configuration BR  in which at 
time t=0 the body is underformed and free of all 
fields; 

• The initial configuration B


in which the body is 

deformed statically and carries the initial fields; 
• The present(current) configuration Bt obtained 

from B


 by applying time dependent incremental 

deformations and fields.In what follows, all the fields 

related to the initial configuration B


will be denoted 

by a superposed “ ” . 
The basic equations of the dynamic theory consist 

of the following equations(see paper [16] for details): 
-the equations of motion : 

u div  


 ;                          (1)                                                             

div 0   on  V


 ;                  (2)                                                    

 
- the equation of the electric field :             (3) 

grade   ;                                                 

 
- the constitutive equations : 

klmn mklkl m,n ,mu   
 

 ,     (4)          

kmn klun,mk ,l    
 

 ,       (5)                   

where 


 is the mass density, u is the incremental 

displacement from B


to Bt , Σ is the incremental 

mechanical nominal stress, Δ is the incremental 

electric displacement vector , φ is the incremental 

electric potential,  


 is the  instantaneous 

elasticity tensor , 


 are the instantaneous coupling 

tensor and 


 are the instantaneous dielectric 

tensor.All incremental fields involved into the above 

equations depend on the spatial variable x and on time 

t .  

     The instantaneous coefficients can be expressed 
in terms of the classical moduli of the material and on 
the initial applied fields as follows : 

c S e Eklmn nmlk lknklmn lm kmn

e E E E ,m l mnkl kn

      



   

  

e E ,mkl lmkl mk  
 

                                      

(6)                       

,kl lk lk kl kl       
 

                                     

where klmnc  are the components of the constant 

elasticity tensor, kmne  are the components of the 

constant piezoelectric tensor , kl  are the 

components of the constant dielectric tensor , iE


 are 

the components of the initial applied electric field and 
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knS


 are the components of the initial applied 

symmetric(Cauchy) stress tensor. 
       It is important to observe (to notice) that the 
previous material moduli have the following 
symmetry properties: 

klmn lkmn k ln m mnklc c c c ,                   (8)                         

mkl mlke e ,                               (9)                                                             

lk kl   .                               (10)                                                                      

     From the previous field and constitutive 

equations we obtain the following fundamental system 

of four equations:  

klmn mkll m,nk ,mk ,u u   
  

          (11)                             

kmn knn,mk ,nku 0, l 1,3    
 

.          (12)                     

                                     

3. Inhomogeneous plane waves in 

piezoelectric crystals 

    In this section we deduce the equation for the 
slowness and for amplitude of inhomogeneous plane 
waves.For electromechanical problem (12) ,we define 
the  inhomogeneous plane wave by :  

 u(x, t) A exp[i S x t ],     (13) 

      x, t exp[i S x t ],      

                                                                                       
where  A=A++iA-  is a complex vector defining the 
mechanical amplitude , Φ is the electric amplitude of 

the wave and  S=S++iS- is a complex vector denoting 
the slowness bivector   , ω is the frequency   of the 

wave , which is a real parameter and i= 1  is the 

complex unit.The superscripts “+” and “-” denote the 
real and imaginary parts of a complex quantity. 
       The real part  of  u  is  

     u A cos S x t A sin S x t exp S x
     

            

(14) 

The planes S x cons tan t    are planes of 

constant phase, while S x cons tan t    are planes 

of constant amplitude.The relations (14) represent a 
train of elliptically polarized plane waves.The waves 
travel in the direction of the vector S+ , with the 

slowness S  and are attenuated in the direction of 

the vector S- . The period is 2
  .For any fixed 

position vector x, the displacement vector u  

describes an ellipse similar to the ellipse defined by 
the bivector A , namely the ellipse whose conjugate 

semi-diameters are A exp( S x)    and 

A exp( S x)   . As t increases the sense in which 

the particle waves along the ellipse is from A+ to A-. 
 
        Definition 1 
       A solution in the form (6)+(7) defines an 
inhomogeneous plane wave if the vector S- is not 
parallel to the S+. 
 
     We see that in the case of the inhomogeneous 
plane waves the planes of constant phase are different 
from the planes of constant amplitude.The phase 

speed is given by 
1

V S
  ,while S  defines 
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the attenuation coefficient. In one  particular case, 
when S- is parallel to the S+, we have an attenuated 
homogeneous plane wave(analyzed in 
Simionescu-Panait  in [12],[13],[15] and [16]). 

In order to solve the problem of inhomogeneous 
plane wave propagation in the above  material , we 
use the directional ellipse method , due to Ph. 
Boulanger and M.Hayes in paper [3].So, the slowness 
bivectors may be written  

S=NC,                        (15) 

Where N is a complex number, iN T e    , C is 

the directional bivector and it  has the form  

C= ˆ ˆqm in,  with ˆ ˆm n 0  , ˆ ˆm n 0   , 

ˆ ˆm n 1   and q≥1.         (16) 

     Thus, the slowness S,as well as the amplitude A 
and  Φ are determined from the equations of motion 
(1)+(2).The main unknown data of the 
inhomogeneous plane wave propagation problem is 
the complex scalar slowness N. 
      We have : 

   i
t


   


 ; 

   
2

2
2t


  


 ; 

i
i

u i NC u
x


 


 ;      (17)                                                                    

i
i

NC
x


 


 ; 

     
2 2

2 2
i j

i j j i

N C C
x x x x
 

    
   

; 

2
2 2

i j l
l i j

u N C C u
x x x

         
. 

       Inserting (13) into (12) gives:  

2 2 2 2 2
klmn mkll n k m

m k ,

a N C C a N
C C
    





 

                                          

(18) 

2 2 2 2
kmn knm k n n kN C C a N C C 0, l,m 1,3     

 

. 
       From which we deduce: 
 

2 2
klmn mkln k m m k l ,N C C a N C C a 0   

  

   

(18)                                                

2 2
kmn knm k n n kN C C a N C C 0, l,m 1,3   

 

. 

       Taking φ=a4 and 
1V
N

  we obtain: 

2
klmn mkln k m m k 4 l ,C C a C C a V a 0   

  

         

(19) 

kmn knm k n n k 4C C a C C a 0, l,m 1,3   
 

,  

which gives: 

2
11 12 13 1

1
2

21 22 23 2 2

2 331 32 33 3
4

1 2 3

V a
V a

0
aV
a

                                               

   

   

   



                                                                                 
(20) 
where  

lm klmn l m l mknn k klmn lm kmn nkl kn n kC C c S e E e E E E C C
           

      

 

mkl ll m k mkl mk m kC C e E C C ,
       

  

                  

(21) 
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 kn n k kn kn n kC C C C .     
 

 

 
Theorem 1 
 
System (20) represents the propagation condition of 
the inhomogeneous plane waves inside the previous 
materials and is equivalent to : 

lm l4 m

4
4m 44

aQ Q
0, l, m 1,3

aQ Q

             

 

 

 (22)    , 

where Q is the electroacoustic tensor and has the 
following components: 

2
klmnlm n k lmQ N C C ,  

  

 

2
mkll4 m kQ N C C , 

 

          (23)                                                                                                                                 

2
kn4m n kQ N C C . 

 

 

Remark 1: 
For the general anisotropy, the tensor Q is 
symmetrical. 
Theorem 2 
 

Linear algebraic system admits a non-zero solution 
(a1,a2,a3,a4) if  and only if N satisfies the following 
algebraic equation:  

lm l4

4m 44

Q Q
det 0, l,m 1,3

Q Q

         

 

 

 . (24)       

Remark 2: 
For any prescribed directional bivector 

ˆ ˆC qm in  , the values of the complex number N 

are obtained by solving the generalized form (24) of 
the secular equation , while the corresponding non-zero 
solutions (a1,a2,a3,a4) are obtained by solving the 
corresponding system (22).  

 

4.Inhomogeneous plane waves propagation in cubic 
crystals 

It is known that , in the particular case of a cubic 
crystal , the elasticity tensor contains three 
independent constants (see [10]).Using Voight’s 
convention we have: 

11 12 12

12 11 12

12 12 11

44

44

44

c c c 0 0 0
c c c 0 0 0
c c c 0 0 0

c
0 0 0 c 0 0
0 0 0 0 c 0
0 0 0 0 0 c

                   

  (25)    

Among the five symmetry classes belonging to the 

cubic system , only 43m  and 23 classes exhibit the 

piezoelectric effect , for the others (i.e. m3m , 432) the 
piezoelectric effect is absent. Similarly, the 
piezoelectric tensor contains one constant : 

14

14

14

0 0 0 e 0 0
e 0 0 0 0 e 0

0 0 0 0 0 e

        

   (26)  ,                              

while the dielectric tensor has one constant , for all 
five symmetry classes: 

0 0
0 0
0 0

           

  .               (27) 

From relations (17) it follows that the acoustic 

tensor Q


 has the following components : 

 

 

2 2 2 2 2 2 2Q (c S )N C (c S )N C (c S )N C 2S N C C11 22 33 1211 11 1 44 2 44 3 1 2
2

2 2 2 2 2 2 22S N C C 2S N C C 4e E N C C C C C N E ,1 113 231 3 2 3 14 2 3 1 2 3

       

     

    

    
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 

2 2
Q Q (c c )N C C 2e (E C E C )N C2 112 21 12 44 1 2 14 2 1 3

2 2 2 2
C C C N E E ,1 21 2 3

     

  

   

 

 

 

2 2
Q Q (c c )N C C 2e (E C E C )N C3 113 31 12 44 1 3 14 3 1 2

2 2 2 2
C C C N E E ,1 31 2 3

     

  

   

 

 

 

2 2 2 2 2 2Q (c S )N C (c S )N C (c S )N C11 22 3322 44 1 11 2 44 3

2 2 2 22S N C C 2S N C C 2S N C C 4e E N C C212 13 231 2 1 3 2 3 14 1 3
2

2 2 2 2C C C N E ,21 2 3

      

  

    

   

   

 

 1

2Q Q (c c )N C C 2e (E C E C )3 223 32 12 44 2 3 14 3 2

2 2 2 2 2N C C C C N E E ,2 31 2 3

    

  

   

 

                                                                                  
(28)                        

 

2 2 2 2 2 2Q (c S )N C (c S )N C (c S )N C11 22 3333 44 1 44 2 11 3

2 2 2 22S N C C 2S N C C 2S N C C 4e E N C C312 13 231 2 1 3 2 3 14 1 2
2

2 2 2 2C C C N E ,31 2 3

      

  

    

   

   

 

 

 2 2 2 2 2
Q Q 2e N C C C C C N E ,114 41 14 2 3 1 2 3     
  

 

 2 2 2 2 2
Q Q 2e N C C C C C N E ,224 42 14 1 3 1 2 3     
  

 

 2 2 2 2 2
Q Q 2e N C C C C C N E ,334 43 14 2 1 1 2 3     
  

 

  2 2 2 2
Q 1 C C C N .44 1 2 3     


 

 
4.1.Longitudinal waves  
 
Definition 3 

A bivector C is said to be isotropic if C C 0  .(29)                    

   

Remark 3 
We consider the particular case of isotropic 

directional bivectors and we can choose C= ii j  

=(1,i,0) , where  0, i, j,k  represents an 

orthornorrmal basis of three dimensional Euclidian 
space and i is the complex unit.Here the 
inhomogeneous wave is circularly polarized in a plane 
normal to the axis x3 .In this case, the corresponding 
amplitude and slowness bivectors  are parallelled that 
is  

     A S 0      (30)                                

     We take  

 A S N, Ni,0             (31)    ,                               

where α is a complex number.We have  
C1C2=i,  
C1C3=C2C3=0,   

2 2 2 2 2 2
1 2 3 1 2 3C 1,C 1,C 0,C C C 0.       (32)          

From (28) , the components of the electroacoustic 
tensor are formed: 

2 2
11 22 1211 11 44Q (c S c S )N 2S N i ,     

    

 

2
12 21 12 44Q Q (c c )N i,  

 

 

2
113 31 14Q Q 2e N i E , 

  

     (33)                                       

2 2
11 22 1222 44 11Q (c S c S )N 2S N i ,     

    

 

2
223 32 14Q Q 2e N i E , 

  

                                                   

2 2 2
311 22 1233 14Q (S S )N 2S N i 4e E N i ,    

     

 

14 24 44Q Q Q 0,  
  
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2
34 14Q 2e N i.



 

Thus , the equation (24) reduces to solving two 
conditions: 

a) The first equation is  
2

11 22 12Q Q Q 0 
  

        (34)                                          

and defines a non-piezoelectric wave ,polarized in the 
plane x1x2, which depends on the initial stress field, 

only.This wave is marked 2P


 . 

b)  The second equation is  

34Q 0


                 (35)                                                        

has a piezoelectric wave.This wave is noted TH


 . 

In the first case, we noted  
1V
N

  and 2V x 


 .  (36)                                           

The relation (34) becomes  
2

2
11 22 11 22 12x x 0

                 

    

 ,  (37) 

where  

11 11 22 1211 44(c S c S ) 2S i,     
   

 

12 12 44(c c )i,  


                       (38)                                                  

22 11 22 1244 11(c S c S ) 2S i.     
   

 

We have   x 11 12 11 12 444 c c c c 2c      .In 

the case of cubic crystals, we have x 0.   

Then

  11 22 121,2 44 12 11 11 12x S S 2S i i 2c c c c c ,      
  

(39)        

  

2

1,2

11 22 12 44 12 11 11 12

N .
S S 2S i i 2c c c c c




     



  

  

  If  

  
2
1

11 22 12 44 12 11 11 12

N
S S 2S i 2c c c c c




     



  

then we have  1 1 1N Re N i Im(N )  ,  (40)                   

where

  

  

2 2o o o o o o o
ρ S - S + ρ S - S + 2 S + 2c + c - c c + c11 22 11 22 12 44 12 11 11 22

Re(N ) = ±1 1, 2 2 2o o o
2 S - S + 2 S + 2c + c - c c + c11 22 12 44 12 11 11 22

                           

              

 

  

  

2 22

11 22 11 22 12 44 12 11 11 22

1 1,2 2 2

11 22 12 44 12 11 11 22

S S S S 2S 2c c c c c
Im(N )

2 S S 2S 2c c c c c

                           
               

      

  

 
 We obtained : 

 1 1 1N Re N i Im(N ) i ,  
   

 

 

11 22S S ,
      

  

 

  
2 22

11 22 12 44 12 11 11 22S S 2S 2c c c c c ,
                

   

 

  
2 2

11 22 12 44 12 11 11 222 S S 2S 2c c c c c
                

  

    1 1 1 1 1S Re(N ) i Im N ,Re(N ) i Im N ,0 ,  

 1 1 1A N , N i,0 ,    

1 0   . (41) 

 
and  
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 2 2 2N Re N i Im(N ) i , 
   

 

 

11 22S S ,
      

  

  
2 22

11 22 12 44 12 11 11 22S S 2S 2c c c c c ,
                

   

 

  
2 2

11 22 12 44 12 11 11 222 S S 2S 2c c c c c
                

  

 

    2 2 2 2 2S Re(N ) i Im N ,Re(N ) i Im N ,0   ,(42) 

 2 2 2A N , N i,0 ,    

2 0  . 

Therefore, the general solution of the system (12) is  

   1 2u(x, t) u x, t u x, t   , 

where  

 
   

1 1 1

1 1 1 1 1 2 1 3

u (x, t) A exp[i S x t ]

N N i exp[i N x N x N x t ],

    

        
(43) 

 
   

2 2 2

2 2 2 1 2 2 2 3

u (x, t) A exp[i S x t ]

N N i exp[i N x N x N x t ].

    

        
(44) 

 
4.2.Transverse waves 
  
In this case , the corresponding and slowness bivectors 
are orthogonal , that is : 

A S 0   .      (45)                                                   

Remark 4 
The plane of constant amplitude is orthogonal to the  

plane of constant phase (S S 0   ).The bivector C 

may not be isotropic.As in [2],[3],[4] , we choose 

ˆ ˆA C m n    ,    (46)   

where                                                                                

1 ˆ ˆC q m in
     

is the reciprocal of the bivector C and δ and γ are 
arbitrary scalars . 
Thus , in the second case we choose an anisotropic 
directional bivector 

        1 2C C ,C ,0   ,       (47)   

with  

1C cos i sin   , 

2C cos i sin   ,  0,2   . 

This inhomogeneous wave is elliptically 
polarized in the plane normal to the axis x3,except for  

the particular directions 
3 5 7, , ,

4 4 4 4
           

. In 

this case , the  wave is circularly polarized.  
We have : 

C1C2=1 , C1C3=C2C3=0,  

2
1
2
2
2
3
2 2 2
1 2 3

C cos 2 isin 2 ,

C cos 2 isin 2 ,

C 0,

C C C 2cos 2 .

  

  



   

             (48) 

     From (28) , the components of the 
electroacoustic tensor are formed: 

2
2Q (c S c S 2 E )N cos 2111 2211 11 44

2 22S N i c S c S N sin 2 ,12 11 2211 44

       

     
    

   

   
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2 2
1 212 21 12 44Q Q (c c )N 2 cos 2 N E E ,     

   

 

2 2
1 1 313 31 14Q Q 2e N E 2 cos 2 N E E ,    

    

(49) 

2
2Q (c S c S 2 E )N cos 2211 2222 11 44

2 22S N i c S c S N sin 2 ,12 11 2211 44

       

      
    

   

   

 

2 2
2 2 323 32 14Q Q 2e N E 2 cos 2 N E E ,    

    

 

2
2Q (2c S S 2 E )N cos 2311 2233 44

2 22S N 4e E i S S N sin 2 ,312 11 2214

      

    
    

   

   


 

2
114 41Q Q 2 cos 2 N E ,   

  

 

2
224 42Q Q 2 cos 2 N E ,   

  

 

2 2
334 43 14Q Q 2e N 2 cos 2 N E ,    

  

 

 2
44Q 2N 1 cos 2 .  



 

4.2.1.  

If  1 2E E 0 
 

 ,we obtain : 

2Q (c S c S )N cos 211 2211 11 44

2 22S N i c S c S N sin 2 ,12 11 2211 44

     

     
    

  

   

         

13 31Q Q 0, 
 

 

2Q (c S c S )N cos 211 2222 11 44

2 22S N i c S c S N sin 2 ,12 11 2211 44

     

      
    

  

   

 

23 32Q Q 0, 
 

 

2
2Q (2c S S 2 E )N cos 2311 2233 44

2 22S N 4e E i S S N sin 2 ,312 11 2214

      

    
    

   

   


 (50) 

14 41Q Q 0, 
 

 

24 42Q Q 0, 
 

 

 

2 2
334 43 14Q Q 2e N 2 cos 2 N E ,    

  

 

 2
44Q 2N 1 cos 2 .  



 

Then, system (20) reduces to two independent 
subsystems ,  as follows: 

• The first subsystem   

111 12

2
12 22

aQ Q
0

aQ Q

           





 

     (51)                               

defines a non-piezoelectric wave , polarized in the 
plane x1x2 , which depends on the initial stress 

field,only.It corresponds to 2P


 guided wave. 

• The second subsystem 

333 34

4
34 44

aQ Q
0

aQ Q

           





 

     (52)                               

has a solution a transverse-horizontal wave ,with 
polarization after axis x3,which is piezoelectric and 
electrostrictive active , and depends on the initial 
mechanical and electrical fields.This wave is linked to 

TH


 guided wave. 

4.2.2 

 If  3E 0


 ,we obtain : 

2
2Q (c S c S 2 E )N cos 2111 2211 11 44

2 22S N i c S c S N sin 2 ,12 11 2211 44

       

     
    

   

   

 

2 2
1 212 21 12 44Q Q (c c )N 2 cos 2 N E E ,     

   

 

2
12 21 12 44Q Q (c c )N ,  

 
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2
113 31 14Q Q 2e N E , 

  

 

2o o o o 2Q = (c + S + c + S - 2η E )N cos2α +211 2222 11 44
o o o o2 22S N - ρ+ i -c + S + c - S N sin2α,12 11 2211 44

    

 

2
223 32 14Q Q 2e N E , 

  

 

2Q (2c S S )N cos 211 2233 44

2 22S N i S S N sin 2 ,12 11 22

    

   
    

  

   

(53)                     

2
114 41Q Q 2 cos 2 N E ,   

  

 

2
224 42Q Q 2 cos 2 N E ,   

  

 

 

2
34 43 14Q Q 2e N , 

 

 

 2
44Q 2N 1 cos 2 .  



 

The system (20) reduces to two independent 
subsystems , as follows : 

• The first subsystem has the form : 

11 12 14
1

12 22 24 2

4
14 24 44

Q Q Q a
Q Q Q a 0

aQ Q Q

                      

  

  

  

      (54)             

defines an inhomogeneous plane wave, polarized into 
the plane x1x2,associated with the electric field , 
providing piezoelectric and electrostrictive effects , 
and depending on the initial stress and electric fields . 

It corresponds to 2P


 wave from  guided wave 

propagation problem. 
• The second subsystem is reduced  to a 
single equation , as follows :  

33 3Q a 0


        (55)                                         

defines a transverse-horizontal wave, with 
polarization after the axis x3,non-piezoelectric and 
influenced by the initial stress field, only.It 

corresponds to TH


 wave form the problem of 

guided wave propagation.                                                         

 5.Conclusions 

In our paper  we obtained the conditions of 
inhomogeneous plane wave propagation in cubic 
crystals subject to initial electromechanical fields.For 
particular isotropic and anisotropic directional 
bivectors we derive decomposition of the propagation 
condition.We show that the specific coefficients are 
similar to  guided waves propagation in monoclinic 
crystals subject to a bias. 

We analyzed the influence of the initial 
mechanical and electric fields on the wave 
propagation.Considering the particular cases of  
longitudinal inhomogeneous waves, we find the 
velocities of  propagation and the polarization of the 
waves , via the electrostrictive effect. 
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